Labroides
Core User of DJI
Flight distance : 9991457 ft
Australia
Offline
|
There are a number of considerations in wind turbine design when it comes to the number of blades but balance is not one of them.
That's because propeller balance isn't affected by the number of blades.
This piece from Wikipedia gives some idea of the factors at play in wind turbine propeller choice:
The number of blades is selected for aerodynamic efficiency, component costs, and system reliability. Noise emissions are affected by the location of the blades upwind or downwind of the tower and the speed of the rotor. Given that the noise emissions from the blades' trailing edges and tips vary by the 5th power of blade speed, a small increase in tip speed can make a large difference.
Wind turbines developed over the last 50 years have almost universally used either two or three blades. However, there are patents that present designs with additional blades, such as Chan Shin's Multi-unit rotor blade system integrated wind turbine.[27] Aerodynamic efficiency increases with number of blades but with diminishing return. Increasing the number of blades from one to two yields a six percent increase in aerodynamic efficiency, whereas increasing the blade count from two to three yields only an additional three percent in efficiency.[28] Further increasing the blade count yields minimal improvements in aerodynamic efficiency and sacrifices too much in blade stiffness as the blades become thinner.[citation needed]
Theoretically, an infinite number of blades of zero width is the most efficient, operating at a high value of the tip speed ratio. But other considerations lead to a compromise of only a few blades.[29]
Component costs that are affected by blade count are primarily for materials and manufacturing of the turbine rotor and drive train. Generally, the lower the number of blades, the lower the material and manufacturing costs will be. In addition, the lower the number of blades, the higher the rotational speed can be. This is because blade stiffness requirements to avoid interference with the tower limit how thin the blades can be manufactured, but only for upwind machines; deflection of blades in a downwind machine results in increased tower clearance. Fewer blades with higher rotational speeds reduce peak torques in the drive train, resulting in lower gearbox and generator costs.
System reliability is affected by blade count primarily through the dynamic loading of the rotor into the drive train and tower systems. While aligning the wind turbine to changes in wind direction (yawing), each blade experiences a cyclic load at its root end depending on blade position. This is true of one, two, three blades or more. However, these cyclic loads when combined together at the drive train shaft are symmetrically balanced for three blades, yielding smoother operation during turbine yaw.
Turbines with one or two blades can use a pivoting teetered hub to also nearly eliminate the cyclic loads into the drive shaft and system during yawing. A Chinese 3.6 MW two-blade is being tested in Denmark. Mingyang won a bid for 87 MW (29 * 3 MW) two-bladed offshore wind turbines near Zhuhai in 2013.
Finally, aesthetics can be considered a factor in that some people find that the three-bladed rotor is more pleasing to look at than a one- or two-bladed rotor. |
|